	[Lesson Title] Perimeter and Area of Squares and Rectangles			TEACHER NAME Carolyn Connelly	PROGRAM NAME Trumbull Career \& Technical Center	
	[Unit Title]			NRS EFL(s) $2-3$	TIME FRAM 60 minutes	
	ABE/ASE Standards - Mathematics					
	Numbers (N)	Algebra (A)		Geometry (G)	Data (D)	
	Numbers and Operation	Operations and Algebraic Thinking		Geometric Shapes and Figures	Measurement and Data	$\begin{array}{\|l\|l\|} \hline \text { D.3.3 } \\ \text { D.2.13 } \end{array}$
	The Number System	Expressions and Equations	A.4.3	Congruence	Statistics and Probability	
	Ratios and Proportional Relationships	Functions		Similarity, Right Triangles. And Trigonometry	Benchmarks RED are prio benchmarks	dentified in y be o view a
	Number and Quantity			Geometric Measurement and Dimensions	complete lis benchmarks ABLE lesson see the Curr Alignments Teacher Res	priority nd related Ohio plans, please ulum cated on the ree Center
				Modeling with Geometry		
	Mathematical Practices (MP)					
	\checkmark, Make sens	severe in solving	hem. (MP.1)	- U Use approp	gically. (MP.5)	

	4. Task 3: a. Finally, we are going to tile a bedroom floor. The 1 foot by 1 foot tiles that I like are on sale at Lowe's for $\$.69$ each. The dimensions of the bedroom are 16 feet by 16 feet, with a closet that is attached to the one wall that is 2 feet by 3 feet. How many tiles must I purchase to complete the job of tiling? b. Do you have all the information you need to figure this out? What is your plan of attack here? Remember, I don't want to know the perimeter of the room; I want to know how many tiles I will need to completely cover the floor and the closet. i. Possible answers: Draw a picture of the bedroom floor that is 16 feet long and 16 feet wide and add a closet that is 2 feet long and 3 feet wide. c. What is your next step? i. Possible answer: Count the squares that are inside of the drawing. d. Great, so what you are saying is to find out how many tiles you need, you will count the squares and that will tell you how many tiles are to be purchased. What math operation is that? Not perimeter, but ... any guesses on what it is called when you find the amount of square units within something? i. Possible answer: Area. e. Great. Another great rule. Ask students to summarize the rule and record it on the chalk board for them to copy on the note card for future use. f. To find the area of a square or rectangle, count up all of the squares within the outline of the rectangle or square. How many squares are in the 16 ft by 16 ft room along with the 2 ft $\times 3 \mathrm{ft}$ closet? i. Answer: 256 plus $6=262$ square feet. g. Any other way of doing this that would take less time? i. Possible answer: Since I know that area is length times the width, I just counted down 16 rows and over

$\left.\begin{array}{|l|l|}\hline \text { 16 rows and multiplied those two numbers together } \\ \text { and then I multiplied } 2 \times 6 \text { and then added the two } \\ \text { answers together and got } 262 \text { square feet. }\end{array}\right\}$

	DIFFERENTIATION - Use of calculator, scrap paper, small group, pairing lower functioning with higher functioning, using visuals, creating note cards
	TEACHER REFLECTION/LESSON EVALUATION This is a real life lesson that allows a person to gain the knowledge to become more confident when tackling home repairs, etc. Practicality is important to me. It gives the students an opportunity to almost role play the part of being a consumer at a home improvement store.
	ADDITIONAL INFORMATION

Determine the area. Each $\square=1$ square unit (\mathbf{u}^{2}).
3)
1)

2)

3)

4)

7)

5)

6)

8)

Ψ				

10)

11)

12)

13)

14)

9)

4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
15. \qquad

Determine the area. Each $\square=1$ square unit (\mathbf{u}^{2}).

10)

8)

7)

5)

6)
4)

2)
3)

2. $\quad \mathbf{5 4} \mathbf{u}^{2}$
3. $\quad 6 u^{2}$
4. $\quad 4 u^{2}$
5. $\quad 8 \mathbf{u}^{2}$
6. $\frac{14 \mathrm{u}^{2}}{12 \mathrm{u}^{2}}$
8. $\quad \mathbf{9 0} \mathbf{u}^{2}$
9. $\frac{10 \mathrm{u}^{2}}{\text { 10. } \frac{21 \mathrm{u}^{2}}{}}$
11. \qquad
12. $\frac{\mathbf{2 7} \mathrm{u}^{2}}{\text { 13. } \frac{\mathbf{3 0} \mathrm{u}^{2}}{\text { 14. }} \frac{\mathbf{4 0 \mathrm { u } ^ { 2 }}}{}{ }^{2}}$
15. $\quad \mathbf{2 4} \mathbf{u}^{2}$
13)

14)

15)

Determining Perimeter
Name:
Find the perimeter of each shaded section. Each block is 1 square unit (u).
1)

2)

3)

4)

5)

6)

7)

8)

Find the perimeter of each shaded section. Each block is 1 square unit (u).
1)

				2	1	2			
				1		1			
				1		1			
				1			2		
				2	1			2	
						1		1	
						1		1	
						2	1	2	

2)

3)

4)

5)

6)

7)

1.

26
2. $\quad 30$
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. 18
8. \qquad
14

Find the area (in cm) of the rectangles shown.

1)

2)

3)

4)

8
5)

6)

7)

8)

9)

10)

11)

12)

10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
15. \qquad
13)

3
14)

15)

Finding Area

Find the area (in cm) of the rectangles shown.

1)

2)

3)

4)

5)

6)

4. $32 \mathrm{~cm}^{2}$
5. $18 \mathrm{~cm}^{2}$
6. \qquad
7. $35 \mathrm{~cm}^{2}$
8.
$18 \mathrm{~cm}^{2}$
9. $\frac{12 \mathrm{~cm}^{2}}{\text { 10. } \frac{20 \mathrm{~cm}^{2}}{\text { 11. } 40 \mathrm{~cm}^{2}}}$
12. $14 \mathrm{~cm}^{2}$
13. $\frac{18 \mathrm{~cm}^{2}}{18 \mathrm{~cm}^{2}}$
13)

3
10)

11)

9)

7)

8)

12)

15. $\quad 16 \mathrm{~cm}^{2}$

15)

Solve the problems.

1) A piece of plywood was cut so its length was 8 feet by 4 feet. What is the area of the wood?
2) A book had a length of 5 inches and a width of 10 inches. What is the area of the book?
3) A rectangle swimming pool was 9 meters wide with a surface area of 90 square meters. What is the length of the pool?
4) An envelope from the post office is 3 inches wide with a total area of 30 square inches. What is the height of the envelope?
5) A book had a length of 5 inches and a width of 8 inches. What is the perimeter of the book?
6) Wendy bought some wrapping paper for Christmas that was 5 feet long and 2 feet wide. What is the area of the wrapping paper she bought?
7) Rachel was cutting out some fabric for a friend. She cut a piece that was 5 centimeters wide and had an area of $20 \mathrm{~cm}^{2}$. How long was the piece?
8) Faye bought some wrapping paper for Christmas that was 8 feet long and 8 feet wide. What is the perimeter of the wrapping paper she bought?
9) A rug had a length of 2 feet and a total area of $10 \mathrm{ft}^{2}$. What is the width of the rug?
10) An envelope from the post office is 6 inches wide and 8 inches long. What is the perimeter of the envelope?

Solve the problems.

1) A piece of plywood was cut so its length was 8 feet by 4 feet. What is the area of the wood?
2) A book had a length of 5 inches and a width of 10 inches. What is the area of the book?
3) A rectangle swimming pool was 9 meters wide with a surface area of 90 square meters. What is the length of the pool?
4) An envelope from the post office is 3 inches wide with a total area of 30 square inches. What is the height of the envelope?
5) A book had a length of 5 inches and a width of 8 inches. What is the perimeter of the book?
6) Wendy bought some wrapping paper for Christmas that was 5 feet long and 2 feet wide. What is the area of the wrapping paper she bought?
7) Rachel was cutting out some fabric for a friend. She cut a piece that was 5 centimeters wide and had an area of $20 \mathrm{~cm}^{2}$. How long was the piece?
8) Faye bought some wrapping paper for Christmas that was 8 feet long and 8 feet wide. What is the perimeter of the wrapping paper she bought?
9) A rug had a length of 2 feet and a total area of $10 \mathrm{ft}^{2}$. What is the width of the rug?
10) An envelope from the post office is 6 inches wide and 8 inches long. What is the perimeter of the envelope?

Solve the problems.

26 in	$50 \mathrm{in}^{2}$	$10 \mathrm{ft}^{2}$	10 m
28 in	32 ft	10 in	$32 \mathrm{ft}^{2}$

1) A piece of plywood was cut so its length was 8 feet by 4 feet. What is the area of the wood?
2) A book had a length of 5 inches and a width of 10 inches. What is the area of the book?
3) A rectangle swimming pool was 9 meters wide with a surface area of 90 square meters. What is the length of the pool?
4) An envelope from the post office is 3 inches wide with a total area of 30 square inches. What is the height of the envelope?
5) A book had a length of 5 inches and a width of 8 inches. What is the perimeter of the book?
6) Wendy bought some wrapping paper for Christmas that was 5 feet long and 2 feet wide. What is the area of the wrapping paper she bought?
7) Rachel was cutting out some fabric for a friend. She cut a piece that was 5 centimeters wide and had an area of $20 \mathrm{~cm}^{2}$. How long was the piece?
8) Faye bought some wrapping paper for Christmas that was 8 feet long and 8 feet wide. What is the perimeter of the wrapping paper she bought?
9) A rug had a length of 2 feet and a total area of $10 \mathrm{ft}^{2}$. What is the width of the rug?
10) An envelope from the post office is 6 inches wide and 8 inches long. What is the perimeter of the envelope?

Answers
1.
2.
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

